
MATH 462 LECTURE NOTES WEEK 1

ADAM M. OBERMAN

1. Week 1: k means clustering

This note covers lectures 1 and 2. References

• Clustering [SSBD14, Chapter 22]
• Vector Calculus [DFO20, Chapter 5]

1.1. Introduction and problem setup. In k-means clustering, we want to partition the data
into k sets, where each partition contains similar data. In our case we consider vector data and
use distance as measure of similarity.

Figure 1. Example of a k = 3 cluster

Givens.

• a dataset, Sm, consisting of m vectors in d-dimensions, Rd.

Sm = {x1 . . . , xm}

• k, the number of partitions required.

Goal: We want to partition the data into k disjoint sets,

Sm = C1 ∪ C2 ∪ · · · ∪ Ck

in such a way that ‘similar’ points belong to the same partition. Each partition Cj is represented
by a vector, wj, which is called a ‘mean’.
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Model: Similarity is a semantic1 relation. It is replaced by the a mathematical relation of distance.
The distance function we use is the usual Euclidean distance, d(x, x′) = ‖x− x′‖, where

‖x− y‖2 = (x1 − y1)
2 + · · ·+ (xd − yd)

2

Formally our model substitutes semantic similarity for geometric similarity via

d(x, x′) small means x and x′ are similar

Method: The k-means algorithm.
Randomly choose initial means W = (w1, . . . , wk).

• Assign each point x in dataset Sm to the cluster Ci corresponding to the closest mean
wi.

• Update the means by setting wi to be the mean of the vectors in the cluster Ci

Repeat until convergence (meaning the w don’t change).

Example 1.1. Do a one dimensional example.

1.2. Discussion. Clustering is visually simple and the algorithm is also simple to implement and
understand.

In what follows, we will deliberately make things complicated. Why? We are using this digestible
example of k-means clustering to introduce some concepts which will appear later in a more
complicated context.

Analysis:

• We will analyze the problem, using simple examples to show what can happen.
• We will give a variational interpretation of the algorithm, and prove that each step of the
algorithm improves the cluster, until the algorithm terminates at a fixed point.

2. Analysis via examples

[ Pictures ]

3. Analysis via loss

3.1. Hypothesis class of partition functions. Given k vectors w1, . . . wk, written as the single
array of vectors W = (w1, . . . , wk) define the hypothesis class of functions

H = {hW : Rd → Rd | W = (w1, . . . , wk) ∈ Rd×k}
where each function is given by

(1) hW (x) = w∗(x) = argmin
w∈{w1,...,wk}

‖x− wi‖2

So hW (x) returns the closest wi to x.2

Note: hW (x) is piecewise constant. The pieces are determined by the sets

Vj = {x ∈ Rd | h(x) = wj}
which are the Voronoi cells corresponding to the points https://en.wikipedia.org/wiki/

Voronoi_diagram. See Figure 2.

1semantic: relating to meaning
2We leave the function undefined at the points where there is more than one minimizer

https://en.wikipedia.org/wiki/Voronoi_diagram
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Figure 2. Voronoi diagram illustrating the function

Define the partition Cj by

(2) Cj = {x ∈ Sm | h(x) = wj}

3.2. Loss functional.

Definition 3.1 (Empirical Loss functional). Given a dataset Sm and a function h : Rd → Rd,
define the empirical loss functional to be the average squared distance from a point to its image
under the transformation h(x),

(3) !L(h) = L(h, Sm) =
1

m

m"

i=1

‖h(xi)− xi‖2

Remark 3.2. The term functional is used for a function L that inputs another function and returns
a number. The correct notation is L(h, Sm) to indicate the dependence on the dataset. The

term empirical and the notation !L is a shorthand which hides the dependence of the loss on the
dataset. The loss (3) is an example of a typical loss functional, which has the form

!L(h) = 1

m

m"

i=1

ℓ(h(xi), xi)

in the case of the loss ℓ(x1, x2) = ‖x1 − x2‖2,
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The k-means loss functional by

!L(hW ) =
1

m

m"

i=1

‖hW (xi)− xi‖2

Lemma 3.3. Given a function hW of the form (1), we can write

!L(hW ) =
1

m

k"

j=1

"

x∈Cj

‖x− wj‖2

Proof. Rewrite the loss as

!L(hW ) =
1

m

k"

j=1

"

x∈Cj

‖x− hW (x)‖2 since C1, . . . Ck is partition of Sm

=
1

m

k"

j=1

"

x∈Cj

‖x− wj‖2 by definition (2)

□

3.3. Algorithm. Here we rewrite the simple k-means algorithm described above in terms of the
hypothesis.

Given an initial (e.g. random) choice of W 0, for any t, given W t, define

(4) wt+1
j = argmin

w∈Rd

"

x∈Cj

‖x− w‖2, j = 1, . . . , k

thus in each cluster, the wt
j is updates to one which improves the sum of the distances over the

cluster

Remark 3.4. In other parts of the course, we will consider algorithms which update the loss using
a gradient with respect to the weights. However, in this case, gradient based algorithm are not
appropriate because hW is piecewise constant, so not really differentiable in W .

Lemma 3.5. Suppose we update hW according to (4). Then we have

!L(ht+1
W ) ≤ !L(ht

W )

with a strict inequality, unless W t+1 = W t

4. (NOT COVERED) Interpretation: Generative and Discriminate

4.1. Generative model. A generative model is a way of generating new data points. For ex-
ample, in statistics, Gaussian model, learn the parameters (mean and variance), and can then
generate new data, provided we can sample from a Gaussian (which we can).

We can interpret the k-means function hW as a generative model for the data, as follows.

Definition 4.1. Given the means µi, define σ2
i to be the variances of each cluster, and pi to be

the fraction of data points in the cluster. Generate a new data point as follows:

• Choose an index j from 1, . . . , k, with probability pj.
• Generate a point x from the d-dimensional Gaussian with mean µj and variance σj.
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We can ask the question, when will the generative model determined by the parameters ‘match’
the samples. For example, if the samples were generated by k Gaussians, variances σ2

j and means
µj. Can we recover the parameters of the Gaussians.

Remark 4.2. In general this is a hard problem to solve, but if the Gaussians are widely separated
with small (say constant) σj, then we expect the method to work

Example 4.3. • Find a simple example where we recover the generating distribution. (Hint:
can do a one dimensional example, with k = 2, and with points uniform on two intervals).

• Generalize this to a d = 2 example (with circles instead of intervals).
• Change the d = 1 example so it fails to recover the distribution (Hint: make the samples
unbalanced, so more often from one).

• Change the d = 2 example so it fails to recover the distribution, using a different method
from the previous example. (Hint: make the samples come from squares instead of circles).

4.2. Discriminative model. A discriminative model is one where we make a decision (e.g. clas-
sification). We can interpret the k-means function hW as a discriminator as follow:

Definition 4.4. Given hW . Given two points x, x′. Then x, x′ are similar according to the
function hW if hW (x) = hW (x′)

Example 4.5. Give examples where hW succeeds or fails as a discriminator.

5. Exercises

The exercises are in a separate document
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