
MATH 462 LECTURE NOTES

ADAM M. OBERMAN

1. Inner Products

1.1. Review of analytic geometry. Review [DFO20, Chapter 3], sections 3.1-3.6

• Definition of norms (normed vector space), 1-norm, 2-norm
• Definition of inner products (inner product space)
• Definition of PSD (symmetric, positive definite) matrix
• Definition of a metric
• Cauchy Schwartz inequality
• Angle between two vectors: cos θ = x⊤y/‖x‖‖y‖ .

2. Orthogonal Projections

Review [DFO20, Chapter 3], Section 3.8

• orthogonal vectors
• orthogonal projections
• projections onto line
• projections onto subspace
• projection matrices
• PSD Matrix factorization, P = O⊤ΛO, where O orthogonal and Λ is diagonal.

Example 2.1. Do all the examples in Section 3.8

Example 2.2. if x = [1, 2, 3] then

x⊤x = 12 + 22 + 32 = 14

but

xx⊤ =

!

"
1 2 3
2 4 6
3 6 9

#

$

2.1. Projection onto vectors. Given a vector b, the projection of x onto b is given by

Projb(x) = argmin
t

‖x− tb‖2

Define f(t) = ‖x− tb‖2 so that f ′(t) = b⊤(x− tb), giving

t =
b⊤x

‖b‖2 , tb =
b⊤x

‖b‖2 b

Thus

Projb(x) =
b⊤x

‖b‖2 b
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We can write the matrix representation as of the projection as

M = Projb =
1

‖b‖2 bb
⊤

Definition 2.3. Given x ∈ Rn and a linear subspace U , we define the projection

(V) ProjU(x) = argmin
y∈U

‖x− y‖2

This is the variational definition of the projection, as the closest point.
When U has a basis b1, . . . , bp, we can write the projection in the parametric form. Since any

vector y ∈ U can be written as

y =

p%

i=1

λibi = Bλ, B = [b1, . . . , bp], λ ∈ Rp

Then (V) is equivalent to

(P) ProjU(x) = argmin
λ∈Rp

‖Bλ− x‖2

which we refer to as the parametric representation.

Remark 2.4 (Vector calculus review). Recall from vector calculus, https://en.wikipedia.org/
wiki/Gradient.

(1) x is a d-dimensional column vector,
(2) f : Rd → R, Then ∇f : Rd → Rd, ∇f(x) is also a column vector. The reason for this is

we want to generalize the derivative: f(x+ h) ≈ f(x) + hf ′(x) becomes:

f(x+ hv) ≈ f(x) + h∇f(x) · v
. We can’t write the equation above if ∇f is a row vector.

(3) (The total derivative df = ∇f⊤ is a row vector, see, https://en.wikipedia.org/
wiki/Gradient total derivative.)

(4) If g : Rd → Rn (the function is a column vector), then the jacobian, Jg : Rd → Rn, is
the matrix of partial derivatives,

(Jg)ij =
∂gi
∂xj

Each row of the jacobian, Jg, is the gradient transpose (∇gi)
⊤ of gi. In particular, if

g(x) = Mx, then Jg = M . (Check this!)
(5) The dot product rule: for vector-valued functions g(x), h(x) : Rd → Rn,

∇(g(x)⊤h(x)) = (Jg)⊤h+ (Jh)⊤g

(6) Using these rules allows us to differentiate f(x) = ‖Mx− b‖2 = (Mx− b) · (Mx− b).

∇f = 2M⊤(Mx− b)

Reviewing vector calculus rules as above (which use math notation). Now returning to ML
notation, define f(λ) = ‖Bλ− x‖2, then

∇λf(λ) = 2B⊤(Bλ− x)

so the minimizer, λ, of (P) solves

(1) B⊤Bλ = B⊤x

https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Gradient
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Here (1) is called the normal equation. Then y = Bλ gives

(L) ProjU(x) = B(B⊤B)−1B⊤x

We refer to (L) as the matrix representation of the projection. In particular,

ProjU = B(B⊤B)−1B⊤

2.2. Orthogonal Basis. If we use an orthonormal basis v1, . . . , vp, and write

O = [v1, . . . , vp]
⊤, p× n matrix

Then OTO = I is the p dimensional identity matrix, and (L) becomes

ProjU(x) = OO⊤(x)

Remark 2.5. See examples in class or from [DFO20] of orthogonal projection matrices.

Here we see that

M = ProjU =

p%

i=1

Projvi =

p%

i=1

vivi
⊤

which represents the projection matrix as a sum of one dimensional projections.

Example 2.6. Let U be the span of two vectors, b1 = [1, 1, 1]⊤, b2 = [0, 1, 2]⊤ in R3. Then . . . ,
the projection matrix is given in notes.

Form, using Gram-Schmidt, the orthonormal basis v1 =
1√
3
[1, 1, 1]⊤, v2 =

1√
2
[−1, 0, 1]⊤. Then

the projection matrix can be written as

M = ProjU = v1v
⊤
1 + v2v

⊤
2 =

1

3

!

"
1 1 1
1 1 1
1 1 1

#

$+
1

2

!

"
1 0 1
0 0 0
1 0 1

#

$

3. Principal components analysis

Refer to [DFO20] Chapter 10. Refer to [SSBD14], Chapter 23 for proofs.
Given Sm = {x1, . . . xm} with xi ∈ Rn.

Definition 3.1. The covariance matrix of Sn is given by

C =
1

m

m%

i=1

xix
⊤
i

Recall that M = xx⊤ is the rank 1 n× n matrix

Mij = xixj.

The vector representation. Given Sm as above, form the m× d matrix

X = [x1, . . . , xm]
⊤ ∈ Rm×d

and write

X⊤ = [x⊤
1 , . . . , x

⊤
m] ∈ Rd×m

Then the covariance matrix is given by the d× d matrix

C = X⊤X ∈ Rd×d
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Where

C =
m%

i=1

xix
⊤
i

(which follows from the matrix representations above).

Definition 3.2. Given Sm with covariance matrix C. Let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 be the
non-negative eigenvalues of C and let v1, . . . , vn be the corresponding eigenvectors. Then the
first p principal components are given by v1, . . . , vp. Given a data point x, the PCA representation
of x is given by the projection onto the span of v1, . . . , vp

ProjV (x) =

p%

i=1

Projvi(x) =

p%

i=1

(v⊤i x)vi

We have the following variational interpretation of PCA.

Definition 3.3. (Compression and recovery matrix) Let W be a compression matrix mapping the
data, vectors in Rn to Rp, for p < n. Let U be a recovery matrix, mapping Rp to Rn. For a
given dataset Sm, with mean zero, define

(2) L(W,U, Sm) =
1

m

m%

i=1

‖xi − UWxi‖2

Theorem 3.4. Given Sm, then the Compression-Recovery loss (2) is minimized by W = V and
U = V ⊤, where V is the matrix of the first p eigenvectors of the covariance matrix of the data.

Proof. This theorem is proved in [SSBD14], Chapter 23. See also Calder notes. □
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