MATH 462 LECTURE NOTES

ADAM M. OBERMAN

1. INNER PRODUCTS

1.1. Review of analytic geometry. Review [DFO20, Chapter 3], sections 3.1-3.6

Definition of norms (normed vector space), 1-norm, 2-norm
Definition of inner products (inner product space)
Definition of PSD (symmetric, positive definite) matrix
Definition of a metric

Cauchy Schwartz inequality

Angle between two vectors: cosf = x"y/| |||yl -

2. ORTHOGONAL PROJECTIONS

Review [DFO20, Chapter 3], Section 3.8

orthogonal vectors

orthogonal projections

projections onto line

projections onto subspace

projection matrices

PSD Matrix factorization, P = O"TAO, where O orthogonal and A is diagonal.

Example 2.1. Do all the examples in Section 3.8
Example 2.2. if x = [1,2, 3] then
tle=1"+22+3=14
but
1 2 3
T=12 46
36 9

Trxr

2.1. Projection onto vectors. Given a vector b, the projection of x onto b is given by
Proj,(x) = arg min ||z — tb||?
t

Define f(t) = ||z — tb||? so that f'(t) = b" (x — tb), giving
. b'x i — bTxb
161> 16112
Thus
bz

PI'Ojb(.T) = Wb
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We can write the matrix representation as of the projection as

1
M = Proj, = ——=bb"
S
Definition 2.3. Given x € R"™ and a linear subspace U, we define the projection
(V) Projy («) = arg min [z — y||?
yelU

This is the variational definition of the projection, as the closest point.
When U has a basis by, ...,b,, we can write the projection in the parametric form. Since any

vector y € U can be written as

p
y=> MNbi=B\  B=[b,....b), A€ R
=1

Then (V) is equivalent to
(P) Proj, (z) :argminHB/\—xH2
AERP

which we refer to as the parametric representation.

Remark 2.4 (Vector calculus review). Recall from vector calculus, https://en.wikipedia.org/
wiki/Gradient.

(1) z is a d-dimensional column vector,
(2) f:R? = R, Then Vf : R? — R%, V f(x) is also a column vector. The reason for this is
we want to generalize the derivative: f(z + h) = f(x) 4+ hf'(x) becomes:
f(@ + o) ~ f(x) + RV f() - v

. We can’t write the equation above if V f is a row vector.

(3) (The total derivative df = Vf' is a row vector, see, https://en.wikipedia.org/
wiki/Gradient total derivative.)

(4) If g : R — R™ (the function is a column vector), then the jacobian, Jg : R — R™, is
the matrix of partial derivatives,

dg;
(Jg)ij - 633]'

Each row of the jacobian, .Jg, is the gradient transpose (Vg;)" of g;. In particular, if
g(x) = Mz, then Jg = M. (Check this!)
(5) The dot product rule: for vector-valued functions g(z), h(x) : R? — R",

V(g(z)"h(z)) = (Jg) h+ (Jh)g
(6) Using these rules allows us to differentiate f(x) = ||Mz — b||> = (Mz —b) - (Mx — b).
Vf=2M"(Mzx —b)

Reviewing vector calculus rules as above (which use math notation). Now returning to ML

notation, define f(\) = || BA — z||?, then

Vaf(A) =2B" (B — 1)

so the minimizer, A, of (P) solves
(1) B"BA=B"z


https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Gradient
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Here (1) is called the normal equation. Then y = B\ gives
(L) Proj,(z) = B(B'B)'B'x
We refer to (L) as the matrix representation of the projection. In particular,

Proj, = B(B'B)'B"
2.2. Orthogonal Basis. If we use an orthonormal basis vy, ..., v,, and write

O=lvy,...,v)", pxn matrix
Then OTO = I is the p dimensional identity matrix, and (L) becomes
Proj,(z) = OO" ()

Remark 2.5. See examples in class or from [DFO20] of orthogonal projection matrices.

Here we see that
p

M = Proj, = Xp:Projvi =) v

=1 i=1

which represents the projection matrix as a sum of one dimensional projections.

Example 2.6. Let U be the span of two vectors, by = [1,1,1]7, by = [0,1,2]" in R®. Then ...,
the projection matrix is given in notes.

Form, using Gram-Schmidt, the orthonormal basis v; = %[1, LT, vy = %[—1,0, 1]7. Then
the projection matrix can be written as

Sy g [ron
M = Proj; = v, +vvg == |1 1 1| +=[0 0 0
3111 1] 210101

3. PRINCIPAL COMPONENTS ANALYSIS

Refer to [DFO20] Chapter 10. Refer to [SSBD14], Chapter 23 for proofs.
Given S™ = {x1,... 2} with x; € R™.

Definition 3.1. The covariance matrix of S™ is given by

m

C= %lexj

i=1
Recall that M = 2" is the rank 1 n x n matrix
M;; = x;z;.
The vector representation. Given S™ as above, form the m x d matrix
X =[x1,..., 2] € R™

and write
X" =[x],...,z)] € R™™
Then the covariance matrix is given by the d x d matrix

C=X"X e R
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Where
m
C = Z rix;
i=1

(which follows from the matrix representations above).

Definition 3.2. Given S™ with covariance matrix C. Let \; > Ay > --- > )\, > 0 be the

non-negative eigenvalues of C' and let vy,...,v, be the corresponding eigenvectors. Then the
first p principal components are given by vy, ..., v,. Given a data point x, the PCA representation
of z is given by the projection onto the span of vy,..., v,
p p
Proj (z) = 3" Proj, (x) = > (0] a)u
i=1 i=1

We have the following variational interpretation of PCA.

Definition 3.3. (Compression and recovery matrix) Let 1 be a compression matrix mapping the
data, vectors in R™ to RP, for p < n. Let U be a recovery matrix, mapping R? to R". For a
given dataset S™, with mean zero, define

m _i - o 112
(2) L(W,U, S )—m;HL UW |

Theorem 3.4. Given S™, then the Compression-Recovery loss (2) is minimized by W =V and
U =V", whereV is the matrix of the first p eigenvectors of the covariance matrix of the data.

Proof. This theorem is proved in [SSBD14], Chapter 23. See also Calder notes. O
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