MATH 462 LECTURE NOTES

ADAM M. OBERMAN

1. Inner Products

1.1. Review of analytic geometry. Review [DFO20, Chapter 3], sections 3.1-3.6

- Definition of norms (normed vector space), 1-norm, 2-norm
- Definition of inner products (inner product space)
- Definition of PSD (symmetric, positive definite) matrix
- Definition of a metric
- Cauchy Schwartz inequality
- Angle between two vectors: $\cos \theta=x^{\top} y /\|x\|\|y\|$.

2. Orthogonal Projections

Review [DFO20, Chapter 3], Section 3.8

- orthogonal vectors
- orthogonal projections
- projections onto line
- projections onto subspace
- projection matrices
- PSD Matrix factorization, $P=O^{\top} \Lambda O$, where O orthogonal and Λ is diagonal.

Example 2.1. Do all the examples in Section 3.8
Example 2.2. if $x=[1,2,3]$ then

$$
x^{\top} x=1^{2}+2^{2}+3^{2}=14
$$

but

$$
x x^{\top}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
3 & 6 & 9
\end{array}\right]
$$

2.1. Projection onto vectors. Given a vector b, the projection of x onto b is given by

$$
\operatorname{Proj}_{b}(x)=\underset{t}{\arg \min }\|x-t b\|^{2}
$$

Define $f(t)=\|x-t b\|^{2}$ so that $f^{\prime}(t)=b^{\top}(x-t b)$, giving

$$
t=\frac{b^{\top} x}{\|b\|^{2}}, \quad t b=\frac{b^{\top} x}{\|b\|^{2}} b
$$

Thus

$$
\operatorname{Proj}_{b}(x)=\frac{b^{\top} x}{\|b\|^{2}} b
$$

We can write the matrix representation as of the projection as

$$
M=\operatorname{Proj}_{b}=\frac{1}{\|b\|^{2}} b b^{\top}
$$

Definition 2.3. Given $x \in \mathbb{R}^{n}$ and a linear subspace U, we define the projection

$$
\begin{equation*}
\operatorname{Proj}_{U}(x)=\underset{y \in U}{\arg \min }\|x-y\|^{2} \tag{V}
\end{equation*}
$$

This is the variational definition of the projection, as the closest point.
When U has a basis b_{1}, \ldots, b_{p}, we can write the projection in the parametric form. Since any vector $y \in U$ can be written as

$$
y=\sum_{i=1}^{p} \lambda_{i} b_{i}=B \lambda, \quad B=\left[b_{1}, \ldots, b_{p}\right], \lambda \in \mathbb{R}^{p}
$$

Then (V) is equivalent to

$$
\begin{equation*}
\operatorname{Proj}_{U}(x)=\underset{\lambda \in \mathbb{R}^{p}}{\arg \min }\|B \lambda-x\|^{2} \tag{P}
\end{equation*}
$$

which we refer to as the parametric representation.
Remark 2.4 (Vector calculus review). Recall from vector calculus, https://en.wikipedia.org/ wiki/Gradient.
(1) x is a d-dimensional column vector,
(2) $f: \mathbb{R}^{d} \rightarrow R$, Then $\nabla f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \nabla f(x)$ is also a column vector. The reason for this is we want to generalize the derivative: $f(x+h) \approx f(x)+h f^{\prime}(x)$ becomes:

$$
f(x+h v) \approx f(x)+h \nabla f(x) \cdot v
$$

We can't write the equation above if ∇f is a row vector.
(3) (The total derivative $d f=\nabla f^{\top}$ is a row vector, see, https://en.wikipedia.org/ wiki/Gradient total derivative.)
(4) If $g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ (the function is a column vector), then the jacobian, $J g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$, is the matrix of partial derivatives,

$$
(J g)_{i j}=\frac{\partial g_{i}}{\partial x_{j}}
$$

Each row of the jacobian, $J g$, is the gradient transpose $\left(\nabla g_{i}\right)^{\top}$ of g_{i}. In particular, if $g(x)=M x$, then $J g=M$. (Check this!)
(5) The dot product rule: for vector-valued functions $g(x), h(x): \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$,

$$
\nabla\left(g(x)^{\top} h(x)\right)=(J g)^{\top} h+(J h)^{\top} g
$$

(6) Using these rules allows us to differentiate $f(x)=\|M x-b\|^{2}=(M x-b) \cdot(M x-b)$.

$$
\nabla f=2 M^{\top}(M x-b)
$$

Reviewing vector calculus rules as above (which use math notation). Now returning to ML notation, define $f(\lambda)=\|B \lambda-x\|^{2}$, then

$$
\nabla_{\lambda} f(\lambda)=2 B^{\top}(B \lambda-x)
$$

so the minimizer, λ, of (P) solves

$$
\begin{equation*}
B^{\top} B \lambda=B^{\top} x \tag{1}
\end{equation*}
$$

Here (1) is called the normal equation. Then $y=B \lambda$ gives

$$
\begin{equation*}
\operatorname{Proj}_{U}(x)=B\left(B^{\top} B\right)^{-1} B^{\top} x \tag{L}
\end{equation*}
$$

We refer to (L) as the matrix representation of the projection. In particular,

$$
\operatorname{Proj}_{U}=B\left(B^{\top} B\right)^{-1} B^{\top}
$$

2.2. Orthogonal Basis. If we use an orthonormal basis v_{1}, \ldots, v_{p}, and write

$$
O=\left[v_{1}, \ldots, v_{p}\right]^{\top}, \quad p \times n \text { matrix }
$$

Then $O^{T} O=I$ is the p dimensional identity matrix, and (L) becomes

$$
\operatorname{Proj}_{U}(x)=O O^{\top}(x)
$$

Remark 2.5. See examples in class or from [DFO20] of orthogonal projection matrices.
Here we see that

$$
M=\operatorname{Proj}_{U}=\sum_{i=1}^{p} \operatorname{Proj}_{v_{i}}=\sum_{i=1}^{p} v_{i} v_{i}^{\top}
$$

which represents the projection matrix as a sum of one dimensional projections.
Example 2.6. Let U be the span of two vectors, $b_{1}=[1,1,1]^{\top}, b_{2}=[0,1,2]^{\top}$ in \mathbb{R}^{3}. Then \ldots, the projection matrix is given in notes.

Form, using Gram-Schmidt, the orthonormal basis $v_{1}=\frac{1}{\sqrt{3}}[1,1,1]^{\top}, v_{2}=\frac{1}{\sqrt{2}}[-1,0,1]^{\top}$. Then the projection matrix can be written as

$$
M=\operatorname{Proj}_{U}=v_{1} v_{1}^{\top}+v_{2} v_{2}^{\top}=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

3. Principal components analysis

Refer to [DFO20] Chapter 10. Refer to [SSBD14], Chapter 23 for proofs. Given $S^{m}=\left\{x_{1}, \ldots x_{m}\right\}$ with $x_{i} \in \mathbb{R}^{n}$.
Definition 3.1. The covariance matrix of S^{n} is given by

$$
C=\frac{1}{m} \sum_{i=1}^{m} x_{i} x_{i}^{\top}
$$

Recall that $M=x x^{\top}$ is the rank $1 n \times n$ matrix

$$
M_{i j}=x_{i} x_{j}
$$

The vector representation. Given S^{m} as above, form the $m \times d$ matrix

$$
X=\left[x_{1}, \ldots, x_{m}\right]^{\top} \in \mathbb{R}^{m \times d}
$$

and write

$$
X^{\top}=\left[x_{1}^{\top}, \ldots, x_{m}^{\top}\right] \in \mathbb{R}^{d \times m}
$$

Then the covariance matrix is given by the $d \times d$ matrix

$$
C=X^{\top} X \in \mathbb{R}^{d \times d}
$$

Where

$$
C=\sum_{i=1}^{m} x_{i} x_{i}^{\top}
$$

(which follows from the matrix representations above).
Definition 3.2. Given S^{m} with covariance matrix C. Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$ be the non-negative eigenvalues of C and let v_{1}, \ldots, v_{n} be the corresponding eigenvectors. Then the first p principal components are given by v_{1}, \ldots, v_{p}. Given a data point x, the PCA representation of x is given by the projection onto the span of v_{1}, \ldots, v_{p}

$$
\operatorname{Proj}_{V}(x)=\sum_{i=1}^{p} \operatorname{Proj}_{v_{i}}(x)=\sum_{i=1}^{p}\left(v_{i}^{\top} x\right) v_{i}
$$

We have the following variational interpretation of PCA.
Definition 3.3. (Compression and recovery matrix) Let W be a compression matrix mapping the data, vectors in \mathbb{R}^{n} to \mathbb{R}^{p}, for $p<n$. Let U be a recovery matrix, mapping \mathbb{R}^{p} to \mathbb{R}^{n}. For a given dataset S^{m}, with mean zero, define

$$
\begin{equation*}
L\left(W, U, S^{m}\right)=\frac{1}{m} \sum_{i=1}^{m}\left\|x_{i}-U W x_{i}\right\|^{2} \tag{2}
\end{equation*}
$$

Theorem 3.4. Given S^{m}, then the Compression-Recovery loss (2) is minimized by $W=V$ and $U=V^{\top}$, where V is the matrix of the first p eigenvectors of the covariance matrix of the data.
Proof. This theorem is proved in [SSBD14], Chapter 23. See also Calder notes.

References

[DFO20] Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. Mathematics for machine learning. Cambridge University Press, 2020.
[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, 2014.

