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Instructions. Refer to class notes and typed notes posted on https://adam-oberman.github.io/Math462/, as well as
textbook references.

Submit your solutions on MyCourses course page.
Math Solutions should be handwritten. You can get help from other students, but you should do the write up yourself. Code

solutions can be a PDF of a workbook, you can use any language.

3.1. Projections and PCA (Theory).

Exercise 3.1. Let Sm be a collection of m vectors in Rn. Form the m× d matrix whose ith row is x⊤
i .

X = [x1, . . . , xm]⊤ ∈ Rm×d

Show that

X⊤X =

m!

i=1

xix
⊤
i

Hint: write out an expression for (X⊤X)ij as the dot product of the ith row and jth column of the corresponding matrices.

Exercise 3.2. Let U be a linear subspace of Rn.

(a) Show that ‖ProjU x‖ ≤ ‖x‖.
(b) Show that ProjU x = x if and only if x ∈ U .
(c) Show that if ProjU x = x for all x ∈ Rn, then U = Rn.

Exercise 3.3. Let O be an orthogonal matrix. Prove that ‖Ox‖ = ‖x‖.

Exercise 3.4. Let A be a symmetric positive definite matrix, and consider the optimization problem

(1) max
‖x‖=1

xTAx

Prove that every critical point of the constrained optimization problem (3.4) satisfies Ax = λx for some scalar λ. Assume
that x∗ is an optimizer of (3.4). Prove that is corresponds to the eigenvector of A with the largest eigenvalue. Hint: use the
technique of Lagrange multipliers for constrained optimization.

3.2. Decision Trees (Example and Theory).

Exercise 3.5. Consider the following data set comprised of three binary input attributes A1, A2, and A3 and one binary output:

Example A1 A2 A3 Output y
x1 1 0 0 0
x2 1 0 1 0
x3 0 1 0 0
x4 1 1 1 1
x5 1 1 0 1

Use the algorithm in Figure 1 to learn a decision tree for these data. Show the computations made to determine the attribute
to split at each node.

Exercise 3.6 (leaf-classification-exercise). In the recursive construction of decision trees, it sometimes happens that a mixed set
of positive and negative examples remains at a leaf node, even after all the attributes have been used. Suppose that we have p
positive examples and n negative examples.

(1) Show that the solution used by the Decision-Tree-Learning algorithm , which picks the majority classification, minimizes
the absolute error over the set of examples at the leaf.

(2) Show that the class probability p/(p+ n) minimizes the sum of squared errors.

Exercise 3.7 (nonnegative-gain-exercise). Suppose that an attribute splits the set of examples E into subsets Ek and that each
subset has pk positive examples and nk negative examples. Show that the attribute has strictly positive information gain unless
the ratio pk/(pk + nk) is the same for all k.
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Figure 1. Decision Tree Algorithm

3.3. PCA coding. Use the code https://colab.research.google.com/drive/1MjaWPqB9-sQSI9r_Egj9Cu1AhBX276eU?
usp=sharing

Exercise 3.8. (1) Use the code provided to compute the covariance matrix for the data Y produced by the code sample.

Print out the empirical covariance matrix "C and the true covariance matrix C. Plot the eigenvectors of the covariance
matrix along with the data.

(2) Now, choose the principal eigenvector, v1 (the one with the larger eigenvalue) and plot the the projections of the data
onto U , the linear subspace spanned by v1. Hint: the formula for the projection is PU (x) = (xT v)v.
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