MATH 462 ASSIGNMENT 1

VERSION September 27, 2022

ADAM M. OBERMAN

1.1. Instructions. Refer to class notes and typed notes posted on https://adam-oberman.github.io/Math462/, as well as textbook references.

Due: Tuesday Sept 27. Submit your solutions on MyCourses course page.
Math Solutions should be handwritten. (If you insist on Latex, get my permission). You can get help from other students, but you should do the write up yourself. Code solutions can be a PDF of a workbook, you can use any language.

1.2. Vector Calculus for ML.

Exercise 1.1. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and write $\|x\|=\sqrt{x_{1}^{2}+\cdots+x_{d}^{2}}$. Find $\nabla f(x)$ for each of the following functions. Write the answer in vector notation.
(1) $f(x)=\|x\|^{2}$.
(2) $f(x)=\|x\|$,
(3) $f(x)=\|x-a\|$
(4) $f(x)=1 /\|x\|$
(5) $f(x)=\|m \cdot x-b\|^{2}$, where $m \in \mathbb{R}^{d}, b \in \mathbb{R}$
(6) $f(x)=\left\|m_{1} \cdot x-b_{1}\right\|^{2}+\ldots\left\|m_{n} \cdot x-b_{n}\right\|^{2}$, where $m_{i} \in \mathbb{R}^{d}, b_{i} \in \mathbb{R}$

Exercise 1.2. (This question was done in class notes in the case $d=1$). Let $w, x_{1}, \ldots, x_{m} \in \mathbb{R}^{d}$. Set

$$
\widehat{L}(w)=f\left(w, x_{1}, \ldots, x_{m}\right)=\frac{1}{m} \sum_{i=1}^{m}\left\|w-x_{i}\right\|_{2}^{2}
$$

Show

$$
\nabla_{w} f\left(w, x_{1}, \ldots, x_{m}\right)=2 w-2 \bar{x}, \quad \bar{x}=\frac{1}{m} \sum_{i=1}^{m} x_{i}
$$

and

$$
w^{*}=\underset{w}{\arg \min } \widehat{L}(w)=\bar{x}, \quad \widehat{L}\left(w^{*}\right)=\frac{1}{m} \sum_{i=1}^{m}\left\|\bar{x}-x_{i}\right\|^{2}
$$

Exercise 1.3 (Derive Matrix equation).
(1) Find $\nabla_{x} f(x)$ where $f(x)=\|M x-b\|^{2}$, where M is $n \times d$ and $b \in \mathbb{R}^{n}$. Write you answer in matrix notation.
(2) Find $\nabla_{w} \widehat{L}(w)$, where $\widehat{L}(w)=\frac{1}{m}\|X w-Y\|^{2}$ and X is $n \times d$, and $Y \in \mathbb{R}^{n}$. Write your answer in matrix notation. Hint: this is just a notation change from the previous problem.
(3) Show that a critical point of \widehat{L} is characterized by the solution of the linear system $X^{T} X w=X^{T} Y$

Note: This result derived (using different notation) in MML Example 5.11.

1.3. k-means Clustering.

Exercise 1.4. For the following two dimensional distributions, sketch by hand a few points sampled from each distribution. using the instructions as a guideline (this should be a simple sketch). Indicate on the sketch the average distance in each cluster.
(1) Consider 4 normal distributions, with means μ_{i} on the vertices $(\pm 1, \pm 1)$ of a square of side length 2 , each with $\sigma_{i}=\sigma=.01$. Indicate the 4-means clustering.
(2) Consider the uniform distribution on the 4 by 2 rectangle with vertices ($\pm 2, \pm 1$). Indicate using two plots two different ways to cluster with 2-means.

Exercise 1.5. This one has been moved to HW, so we can go over the programming background Now will repeat the last exercise using a code implementation. In each case, generate a few dozens points from each distribution (enough to make the plot clear). Then run the k-means algorithm on the data. Plot the distribution of points along with the result of the algorithm by indicating the means μ_{i} of the clusters. Also write or indicate graphically, the σ_{i} (which is the square root of the mean of the distances squared) for each cluster
(1) Consider 4 normal distributions, with means μ_{i} on the vertices $(\pm 1, \pm 1)$ of a square of side length 2 , each with $\sigma_{i}=\sigma=1$. Indicate the 4-means clustering.
(2) Consider the uniform distribution on the 4 by 2 rectangle with vertices $(\pm 2, \pm 1)$. Indicate using two plots two different ways to cluster with 2-means.

Exercise 1.6. Plot $h_{W}(x)$ in dimension 1, when $W=(2,5,9)$. How does the function plot change for $W=(2,8,9)$?
Exercise 1.7. Consider the k-means algorithm as defined in the posted notes.
(1) For each fixed j, the algorithm defines $w_{j}^{t+1}=\arg \min _{w \in \mathbb{R}^{d}} \sum_{x \in C_{j}}\|x-w\|^{2}$. Prove that w_{j}^{t+1} is the mean of the cluster members, in other words,

$$
w_{j}^{t+1}=\frac{1}{\left|C_{j}\right|} \sum_{x \in C_{j}} x
$$

In addition, show that

$$
\sum_{x \in C_{j}}\left\|x-w_{j}^{t+1}\right\|^{2} \leq \sum_{x \in C_{j}}\left\|x-w_{j}^{t}\right\|^{2}
$$

with strict equality, unless $w_{j}^{t+1}=w_{j}^{t}$.
(2) (Proof of Lemma 3.5 from the posted notes) Suppose we update h_{W} according to the k-means algorithm (see notes), and let W^{t} be the corresponding weights. Prove that,

$$
\widehat{L}\left(h_{W}^{t+1}\right) \leq \widehat{L}\left(h_{W}^{t}\right)
$$

with a strict inequality, unless $W^{t+1}=W^{t}$.

