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1. Vector features

The most effective machine learning models are based on linear models using vector features.
In other words, the raw data di are mapped to vectors xi ∈ [0, 1] ⊂ Rn. Then these features are
used for

There are several different settings of features we need to consider:

1.1. human designed features. We have raw data, di and we work with a (human designed)
feature map, which might involve taking a measurement. In this section we consider vector
features. When the features are fixed, usually just write xi ∈ Rd for the features. For human
designed features we usually assume

The features are low dimensional (d = 1, 2, 3) and semantically meaningful: similar
features correspond to similar data).

Example 1.1. The data could be different people, and the features could be their height (in cm)
and their weight (in kilograms).

1.2. math features. In this case, we have low dimensional raw data, and we have a model for the
target function. For example, polynomial, or oscillatory. Then we can use a vector of polynomial
features,

f(x) = (1, x, x2, . . . xd−1), x ∈ R

Example 1.2. We can have raw data x ∈ R and features fi(x) = xi, for i = 1, . . . , d, which
corresponds to fitting one dimensional data with a polynomial. Here we are looking for a nonlinear
classification boundary. See Figure 2.

1.3. Signal processing. In this case x is a physical waveform, e.g. sound wave, electrical current,
and the features come from a digital measurement device,

f(x) = (a0, . . . , ad), x ≈
∑
i

ai sin(2πθi)

1.4. Machine generated features.

Example 1.3. Let di be handwritten digits (on paper) and let xi be the vector features of a digital
image. Then di is given by https://en.wikipedia.org/wiki/MNIST_database. However xi
is just long list of n = 32× 32 digits

Or x can be light hitting a digital camera, and f(x) is the RGB vector color intensities, a digital
image.
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Figure 1. Illustration of the logistic function

Machine generated data is high dimensional and not semantically meaningful.
(Nearby vectors do not correspond to similar images).

2. Linear models and Neural Networks

Write a general hypothesis class:

H = {sw : X → R | w ∈ W}

The main models to consider are

• linear models (when the features are meaningful)
• neural network models (for machine data)

2.1. linear models. In this setting, for x ∈ Rd, we consider the hypothesis class consisting of
linear (actually affine) models

H = {sw(x) | sw(x) = w · x+ w0}

Here sw(x) corresponds to the score of x. We want higher scores to corresponds to higher
probability of classification, as in Figure 1.

Remark 2.1. Notational trick: we can absorb the w0 by adding an extra dimension, whose value
is always equal to one. x ∈ Rd → (x, 1) ∈ Rd+1. w ∈ Rd → (w,w0) ∈ Rd+1

sw(x) = w · x =
d∑

i=1

wixi, w ∈ Rd

2.2. Neural Networks. Neural Networks consist of one more (e.g 32) linear layers, followed by
componentwise-nonlinearity.

L(j)(x) = W (j) · x+ b(j),

with

F (j)(x) = σRelu(L
(j)(x))

where σRelu : Rd → Rd, is componentwise function t 7→ max(t, 0). Other nonlinearities can be
used.
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Then the neural network features are given by composition

f(x) = F (L) ◦ . . . F (1)(x)

Then the final classification is performed by a linear model using the features above.

The cool thing is the the neural network will learn the features and the linear
classifier, at the same time, using the same method as we would for a linear
classifier. So first we will explain linear classification. Then we will reiterate it for a
neural network. So first xi will be (semantically meaningful) vector data. Then, in
the high dimensional case, we will replace xi = f(xi) with (hopefully) semantically
meaningful features.

3. Introduction to binary classification: errors

Reference for this section

• [Mur12, Chapter 8] (mostly the first equation) or [Mur22, Section 5.1.2].
• review earlier notes on logistic and softmax. Will be used in this material.

3.1. Binary classification setup. In the general classification problem, the target set Y is a set
of discrete labels. Here we consider the case of binary classification consisting, so there are two
labels, which we denote by −1,+1, and we write

Y = Y± = {−1,+1}

Sometimes the target set will instead be

Y = Y2 = {0, 1}

(Because for K classification, we will use YK = {0, . . . , K − 1}.)
is used instead, for convenience. It’s important to keep track of which one is used.
We are given a dataset (Sm) consisting of m pairs of (xi, yi), i = 1, . . . ,m, of data, xi ∈ X

and labels, yi ∈ Y ,

(Sm) Sm = {(x1, y1), . . . , (xm, ym)}

Definition 3.1 (Error). The error, or zero-one loss, is given by ` : Y × Y → [0, 1],

`0,1(y1, y2) =

{
0 y1 = y2

1 otherwise

Given a function c : X → Y and the dataset (Sm), the error of the model on the dataset is given
by

(EE) L̂0−1(c) =
1

m

m∑
i=1

`0−1(c(xi), yi)

We also call (EE) the zero-one loss.

Note: when (Sm) is a training, or test set, we call (EE) the training or test error, respectively.
When expressed as a percentage, it’s called the test/training accuracy
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Figure 2. Classification problem: nonlinear feature map leads to a nonlinear
boundary. However, the model hw(x) = w · f(x) is still linear as a function of w.
White line: the classification boundary hw(x) = 0.

3.2. Task versus loss for binary classification. In binary classification the machine learning
task is to train a model h using the dataset (Sm) to accurately predict classes on unseen data.

When we assume that the training dataset is drawn iid from the same distribution ρ(x) as
the unseen data. This is called in-distribution generalization. In distribution generalization is
mathematically defined, and we can prove that certain (e.g. linear) models generalize (in a
probabilistic sense).

Definition 3.2 (Classification Task). The task for binary classification is to train a model on
(Sm) to have high test accuracy.

As we saw earlier, using the zero-one loss and discrete models may not work well.

Definition 3.3 (Classification Method). The method(s) used for classification are to (i) use
differentiable models (ii) differentiable surrogate losses to achieve the classification task.

There are several reasons for changing the loss. These can be

(1) Algorithmic: differentiable models are easier to train
(2) Statistical: linear models generalize better
(3) Generative: logistic regression also gives a model of the data, so can generate new points.
(4) Geometric: the SVM model/loss gives a geometric picture of the classification boundary,

so we can talk about marginal and confident data points.

All these reasons can be confusing. There are different things we can choose to focus on.
In this class, want to learn the parts which are also useful for deep learning. So we focus on
differentiable losses and models. But we will also cover the other parts briefly.

Remark 3.4. In deep learning, we may also want to assume that the test data is drawn from a
different distribution. This is not mathematically well-defined (yet). But the idea for the perfor-
mance of the model to degrade gracefully as the data is changed. This is called out-of-distribution
generalization. Currently, we can have two deep learning models with very similar test and training
accuracy, but one can perform much better on OOD data. Very little is known about this, although
it is an active area of study. E.g. Out-of-distribution generalization and adaptation in natural and
artificial intelligence https://nips.cc/Conferences/2021/Schedule?showEvent=21852

https://nips.cc/Conferences/2021/Schedule?showEvent=21852
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Figure 3. Illustration of logistic classifier: probability of passing (y = +1) an
exam, as a function of hours studying. p = σ(s). From wikipedia https://en.

wikipedia.org/wiki/Logistic_regression. The model is an approximation
of the probability of positive class, as a function of s.

4. Binary classification Losses

4.1. Differentiable losses. The approach to (supervised) binary classification we take is score
based, differentiable loss. The main advantage of this approach

• a differentiable loss is amenable to optimization
• Using the score-based perspective, we can bound the error in terms of the loss
• We get better generalization using a loss like this

Remark 4.1. We already interpreted the gain for decision trees, as the KL-divergence loss. This
will be an important loss for classification in general.

4.2. Standard log-logistic loss. In this section we study how to classify using the standard
log-logistic loss. The classifier is given by (2). The loss is defined for s ∈ R by

`log(s, y) =

{
− log(σ(s)) y = +1

− log(1− σ(s)) y = −1

For a function s : Rd → R, and a dataset (Sm), define the empirical loss,

L̂log(s) =
1

m

m∑
i=1

`log(s(xi), yi)

4.3. Standard margin loss. In this section we study the standard margin (or hinge) loss.
For s ∈ R, use the classifier (2). For s ∈ R, y ∈ Y±, define the margin loss

(1) `margin(s, y) = max(0, 1− ys)
This loss is designed to score which lead to incorrect classification, as well as marginal scores. See
Figure 4. See also Figure 6

For a function s : Rd → R, and a dataset (Sm), define the empirical loss,

(ELM) L̂margin(s) =
1

m

m∑
i=1

`margin(s(xi), yi)

https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Logistic_regression
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Figure 4. Margin loss, this loss is differentiable except at the corner, and lies
above the 0-1 loss

4.4. General classification losses. We need to use a surrogate loss, define over real-valued
hypotheses.

Definition 4.2 (Surrogate loss). classification losses will be defined on the pair (s, c) for s ∈
R, c ∈ Y .

(`class) `class : R× Y → R+

Given s ∈ R, define

(2) csgn : R→ Y±, csgn(s) = sgn(s)

to be the sign of s (undefined when s = 0).

Usually we have the additional requirement that the loss is convex, and monotone, according
to the following definition.

Definition 4.3 (convex classification loss). The loss, (`class) is convex if `class(s, y) is convex as
a function of s for every y ∈ Y±. The loss is monotone if `class is monotone as a function of s
for each y ∈ Y±.

Define the empirical loss of the score based model, s, by

(EL-C) L̂class(s) =
1

m

m∑
i=1

`class(s(xi), yi)
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Figure 5. Plot of loss functions, image takes from https://fa.bianp.net/

blog/2014/surrogate-loss-functions-in-machine-learning/

Binary Classification via loss minimization (score-based)

Inputs:

• Dataset (Sm) with binary labels yi ∈ Y and xi ∈ Rd features.
• Hypothesis class of models hw(x) : Rd → R, parameterized by w.
• Classifier: c : R→ Y±, maps scores h(x) to classes y = c(h(x)) ∈ Y
• Surrogate classification loss, (`class).

Goal:

• Given x, predict y = c(x), in other words, minimize the test error (EE) of the
classifier c(hw∗).

Method:

• Minimize (EL-C) to find the model which minimizes the loss, hw∗ .
• Set y = c(hw∗(x)).

5. Error bounds from the loss

We defined the classification task to be (in-distribution) generalization. For this purpose, both
the losses work equally well. So does any abstract loss which satisfies the properties above.

5.1. Errors from losses. When we use the score-based approach, we need to check that our
loss minimization (which is defined h ∈ R) results in an effective classification. In other words we
care about the average classification error (the 0-1 loss, defined below).

We need to characterize the effect of the loss on the errors. There are two approaches to this
question: (i) we can prove a priori the properties of the classifier, or (ii) we can simply check

https://fa.bianp.net/blog/2014/surrogate-loss-functions-in-machine-learning/
https://fa.bianp.net/blog/2014/surrogate-loss-functions-in-machine-learning/
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a posteriori that the results are good. The purpose of understanding classification losses is to
achieve the first goal.

One possible answer is given by the following idea.

Definition 5.1. Given the triple (`class, c, Cclass) consisting of a classification loss, a classification
map and a constant Cclass > 0. The triplet is an upper bound for the classification error, if

(LvE) `class(h, y) ≥ Cclass `0−1(c(h), y), for all h ∈ R, y ∈ Y±

We say the loss is an upper bound for the error when the constant and the classifier are
understood. Note: if (LvE) holds for Cclass, and Cclass ≥ C, then it also holds for C. Define the
best C in (LvE) to be the largest constant for which (LvE) holds.

Theorem 5.2. Suppose (`class, c, Cclass) is an upper bound for the error. Show that for any
function h : X → R, and any dataset Sm

L̂0−1(c(h)) ≤
1

Cclass

L̂class(h)

In particular, the bound above holds for a minimizer hw∗ of L̂class(h).
We summarize the application of the error bounds as follows.

Error bounds on the minimizer

Inputs:

• Model hw∗ which minimizes the empirical loss (EL-C).
• Classifier: c : R→ Y±, a rule which converts the model value to a class.
• Classification loss `class, which (along with the constant Cclass) is an upper bound

for the error

Outputs:

• The empirical error, (EE), is bounded by 1
Cclass

L̂class(h)

Exercise 5.1. Prove Theorem 5.2.

Exercise 5.2. In this exercise, use csgn. (i) Is the loss `(h, y) = (h− y)2 an upper bound for the
zero one loss? If so, what is the best (largest) constant for which (LvE) holds.

(ii) Show that `(h, y) = |h+ y| is not an upper bound for the zero one loss.
(iii) Given the function `(h, y), suppose there is an h < 0 with `(h, 1) = 0. Show this function

cannot be an upper bound for the zero one loss.
(iv) Converse. Given `(h, y), suppose (1) `(h, y) ≥ 0 for all h, y, (2) there is some c > 0 such

that `(h, y) ≥ c for all h with (̧h) 6= y. Prove that there is a Cclass which makes ` and upper
bound for the zero one loss. What is the best value of Cclass?

5.2. Error analysis for the standard margin loss. We have the following result, which follows
from Theorem 5.2. Given any function h : X → Y±, and any dataset Sm

(3) L̂margin(s) ≥ L̂0−1(csgn(s))
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Figure 6. Score based classification example

Error bounds for margin classification

Inputs:

• Model hw which minimizes the empirical loss (ELM).

Outputs:

• The empirical error, (EE), is bounded by the empirical loss L̂margin(hw)

5.3. Error bounds for the log-sigma loss.

Definition 5.3. Define the the scaled loss by

`log−2(s, y) = −
1

log 2
`log(s, y)

Then

`log−2(s, y) < 1 =⇒ c(s) = y(4)

`log−2(s, y) > 1 =⇒ c(s) 6= y

The proof of this is an exercise.
In particular, Theorem 5.2 holds for this loss.

5.4. Exercises.

Exercise 5.3. Prove (4).

Exercise 5.4. Consider the example of score-based classification illustrated in Figure 6. Find the
minimizer of the empirical loss using the score-based absolute value loss

`abs(s, y) =

{
max(s, 0) y = −1
max(−s, 0) y = +1

the threshold model sw(x) = x − w, and the sign classifier c(s) = sgn(s). Compare to the
majority classifier which chooses the most popular class in each bin. Show that in Figure 6, if we
relabel the scores from 1, 2, 3, 4 to any other non-decreasing values (e.g. try 10, 15, 20, 25), and
use the absolute value loss, we get the same classifier. (Hint: can check this directly or use the
condition for a minimizer).
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Exercise 5.5. Show that with the margin loss (1), the cases in ?? correspond to

`margin(s, y)


[1,∞) incorrect

∈ [0, 1] marginal

= 0 confident

Exercise 5.6. Show that (LvE) holds for the `margin−t with Cclass = 1 and the c = sgn classifier.
Justify (3).

Definition 5.4. Given a threshold t > 0. Define the t-margin loss,

(5) `margin,t(s, y) =

{
max(0, 1− s/t) y = 1

max(0, 1 + s/t) y = −1

Exercise 5.7. (i) Show that setting t = 1 in (5) recovers that standard margin loss. (ii) Generalize
the definitions of the error types ??.

Exercise 5.8. Plot the loss (5) for y = 1 and t > 1. Show symmetry of loss `margin,t(−s,−y) =
`(s, y). Use this to plot loss for y = −1.
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